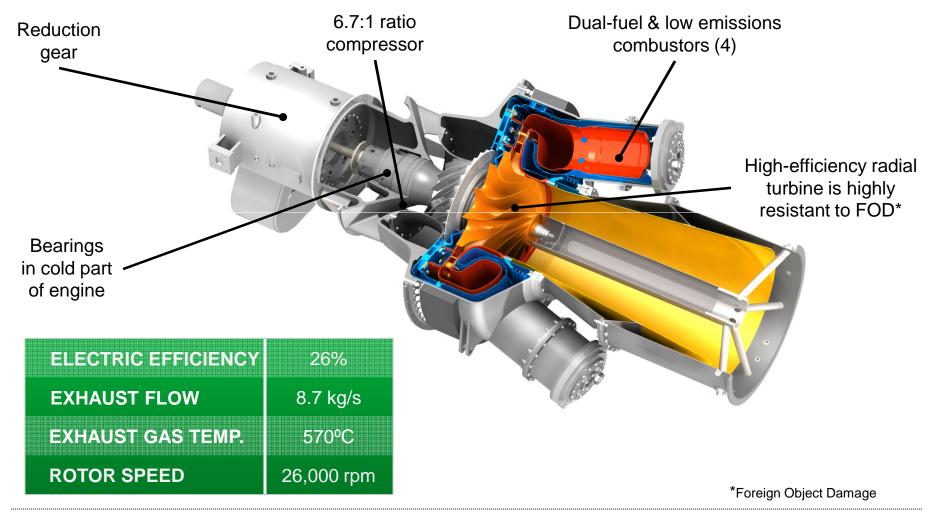


Pyrolysis oil application in OPRA gas turbines

M.Beran Combustion engineer

Contents

- Introduction to OPRA Turbines
- → Application of pyrolysis oil in the OP16 gas turbine
- → Result from the initial test campaign
- Conclusions and future work



Introduction to OPRA

- OPRA was established in the Netherlands in 1991
- → OPRA is an internationally expanding, high growth company with unique, proprietary technology
- → The OP16 combines robustness and simplicity with high performance
- OPRA has demonstrated market success for oil & gas as well as industrial and commercial CHP applications
- → OPRA has sold more than 65 gas turbines over the last five years
- → The OP16 has accumulated more than 700.000 operating hours

The 1.9 MW OP16 gas turbine engine combines the best of simplicity and high performance

Application of pyrolysis oil in the OP16 gas turbine

- → The OP16 all radial design is robust
- → A radial turbine less sensitive to contaminants in the fuels
- Performance of a radial turbine impeller is less sensitive to blades surface distortions compared to axial turbines
- OP16 does not require intricate turbine blade cooling geometries which would be subject to plugging
- → OP16 engine utilizes four tubular combustors
 - Easy maintenance
 - → The size of combustor is not limited

The development of the low calorific fuel combustor

- The low caloric fuel combustor development was done as a part of joint project with BTG Bioliquids BV
- The Pyrolysis oil is one of the good alternatives to fossil fuels as a source of "Green energy".

Development programme

- 1. Initial test campaign using pyrolysis on the existing OP16 conventional burner
- 2. Development and testing of a low calorific fuel combustor
- 3. Full-scale engine testing

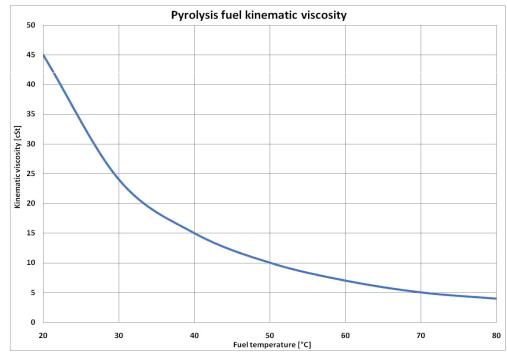
Test set-up:

→ Atmospheric combustor test rig at OPRA

- → Atmospheric combustion rig: Air mass flow rate up to 0.3 kg/s@300°C
- → Flexibility to test wide spectra of liquid and gaseous fuel

Combustor hardware

- Combustion chamber convection flame tube working in diffusion combustion mode
- Fuel injector Pintle airblast nozzle
- Fuel system dual fuel (Pyrolysis oil/Ethanol) with fuel pre-heating
- Emission indicators



Test campaigns

- → Three test campaigns with different flame tube variants were performed
- Determination of optimal burning condition
- Determination of optimal fuel handling condition

Density [kg/m3]	1150
Low Heating Value [MJ/kg]	18.7
Viscosity at 38 °C [cSt]	17
Polymerization temperature [°C]	140
рН	2.5

Determination of the emissions

Flame tube No 1

- → Original OP16 flame tube
- Unburned fuel sediments were found on the flame tube inner walls after the test
- Large amount of unburned fuel as a "sparks" in the combustor exit was observed

Flame tube after first test

Flame tube No. 2

- Complete wall film cooling was removed
- Amount of sediments on the flame tube inner wall was significantly decreased
- Large amount of sediments found behind the dilution zone
- Not possible to reach full load condition due to overloading of the combustor

Flame tube after second test

Flame tube No. 3

- Air split was changed to reach stoichiometric condition in the primary zone
- Combustor effective area and air flow were decreased to keep same pressure loss – larger combustor volume
- Pure pyrolysis oil was possible to burn between 70-100% load
- During start up and run at combustor loads below 70% a mixture of Pyrolysis oil/Ethanol was required
- Amount and size of unburned fuel were significantly decreased
- No sediment on inner flame tube wall was found also behind the dilution zone

Flame tube after third test

Summary of the test results


- → Three test campaigns with different flame tube variants were performed
- The optimal configuration was found for running with pure pyrolysis oil between 70 to 100% load
- The low calorific value and longer residence time needed for proper burning require larger combustor volume
- → The air split was changed to keep stoichiometric air fuel ratio in the primary zone → high flame temperature → increasing of reaction rate

Future work

- → Phase 2 of the development program started
- → Design of real scaled combustor is undergoing
- → Test campaign focusing on combustor performance
- → Determination of optimum mixture of pyrolysis oil/ethanol for part-load operation
- Some additional analysis e.g. CFD analyses of new combustor internal flow and fuel flow in the injector is undergoing

M.Beran Combustion Engineer

